Векторное исчисление

Ве́кторное исчисле́ние, раздел математики, в котором изучаются операции над векторами. Векторное исчисление включает векторную алгебру и векторный анализ. Правила векторной алгебры отражают свойства действий над векторными величинами. Напр., суммой векторов a и b называется вектор, идущий из начала вектора a в конец вектора b при условии, что начало вектора b приложено к концу вектора a; это правило связано с правилом сложения сил или скоростей (см. Параллелограмм сил). В векторном исчислении установлены два типа умножения векторов (см. Скалярное произведение, Векторное произведение). Если i, j, k — три взаимно перпендикулярных единичных вектора в пространстве, то любой вектор a единственным образом можно представить в виде a=a1i+a2j+a3k. Числа a1, a2, a3 называются компонентами (координатами) вектора a. В основе векторного анализа лежат операции дифференцирования и интегрирования вектор-функций. Данный метод широко применяется в инженерии и физике. Понятие вектора было введено ирландским математиком У. Гамильтоном, развившим и усовершенствовавшим векторный анализ. Значительны в этой области работы Гиббса и Хевисайда.
Статья находится в рубриках
Яндекс.Метрика