Ква́нтовая тео́рия по́ля (полей) (КТП), область современной физики, описывающая основные свойства и процессы взаимодействия элементарных частиц, из которых построены все физические объекты мира. Основные положения этой теории были сформулированы в середине 20 в. В ней произошло объединение релятивистских представлений, развитых А. Эйнштейном в теории относительности, и квантовых идей, появившихся в физике с рождением теории атома, созданной Н. Бором, В. Гейзенбергом, Э. Шредингером и П. Дираком в 1920-х гг. В основе КТП лежит представление о существовании элементарных частиц, свойства которых описываются теорией относительности, и которые в физических процессах, происходящих в микромире, рождаются и уничтожаются как целое, при этом величины их физических характеристик строго фиксированы, квантованы.
Важнейшей физической характеристикой элементарных частиц является их масса. Сегодня массы измерены с большой точностью. Например, масса электрона имеет величину me = 9, 1093897(54)•10-28 г = 0, 51099906(15) Мэв/с2, а масса протона (ядра атома водорода) — mp = 1, 6726231(10)•10-24 г = 938, 27231(28) Мэв/с2.
Второй важной физической характеристикой частицы является ее собственный механический момент, называемый спином. Спины частиц квантованы — они всегда кратны половине величины, называемой постоянной Планка ђ= 1, 05457266(63)•10-27эрг•с = 6, 5821220(20)•10-22 Мэв•с, так что они могут быть либо целыми (0, 1, 2…), либо полуцелыми (1/2, 3/2, 5/2…). Частицы с целыми спинами называют бозонами, с полуцелыми — фермионами, их статистические свойства резко отличаются: количество бозонов, которые могут находиться в одинаковых состояниях, не ограничено, а два фермиона занимать одно и то же состояние не могут. Первые описываются статистикой Бозе — Эйнштейна, вторые — статистикой Ферми — Дирака.
Электрические заряды элементарных частиц всегда квантованы и кратны величине элементарного заряда е = 1, 60217733(49)•10-19 кулона или его определенной части (в случае кварков — 1/3 е).
Важной характеристикой элементарной частицы является ее время жизни. Среди наблюдаемых элементарных частиц в настоящее время стабильными (с бесконечно большим временем жизни) считаются: электрон, фотон, нейтрино (разных типов) и протон, причем в ряде моделей предполагается, что последний может быть нестабильным. Остальные частицы нестабильны и распадаются по экспоненциальному закону, так что за время t их количество убывает в e-t/τ раз, при этом их время жизни τдля разных частиц варьируется в очень широком диапазоне (например, у нейтрального пиона - 10-16 с, а у нейтрона — 10 мин).
Нестабильность элементарных частиц есть одно из проявлений их общего свойства взаимопревращаемости и является следствием взаимодействия их фундаментальных составляющих. Сегодня известны четыре базовых типа взаимодействия: сильное, электромагнитное, слабое и гравитационное, различающиеся по силе (константе) взаимодействия. Взаимодействие между частицами ведет либо к превращению одних частиц в другие, либо к возникновению составных комплексов, таких как ядра атомов, атомы и молекулы, причем такие процессы подчиняются определенным законам сохранения. Это — законы сохранения энергии-импульса, момента количества движения, связанные с симметрией пространственно-временного континуума, а также сохранения электрического и других типов зарядов, относящиеся к различным, так называемым внутренним симметриям физических систем. При этом с каждым типом базового взаимодействия связаны свои законы сохранения, позволяющие различать их в практических экспериментах.
Понятие квантового поля возникло в физике как синтез представлений о физических полях типа электромагнитного поля Фарадея — Максвелла и полей вероятностей, описываемых волновыми функциями в квантовой механике. Физические поля были введены, когда возникла необходимость отказаться от принципа мгновенного действия сил, существовавшего в механике Ньютона. Предполагается, что пространство между двумя взаимодействующими частицами (например, двумя электрическими зарядами) заполнено полем, которое служит переносчиком взаимодействия с одной из частиц на другую, причем перенос этот идет с определенной скоростью. Так электромагнитное поле передает действие одной заряженной частицы на другую со скоростью света и тем самым служит переносчиком электромагнитного взаимодействия между частицами. В случае квантовых полей происходит тот же процесс передачи взаимодействия, но и он происходит квантами — порциями, при этом в качестве последних выступают элементарные частицы, имеющие строго фиксированные характеристики массы, спина, заряда и др. Таким образом, с одной стороны, сами взаимодействующие частицы имеют квантованные характеристики массы, спина, заряда, а с другой стороны, взаимодействие между ними передается квантовым полем специального типа со своими квантованными характеристиками.
Исторически первой физической теорией, созданной на основе этих представлений, стала квантовая электродинамика, построенная в конце 1940-х гг. С. Томонагой, Р. Фейнманом и Дж. Швингером. Она описывает процессы электромагнитного взаимодействия, в которых участвуют элементарные электрически заряженные частицы: электроны (и/или их античастицы — позитроны) и гамма-кванты (частными примерами которых являются видимый свет, радиоволны и гамма-излучение, испускаемое радиоактивными ядрами). Первые из них имеют спин 1/2 и отличную от нуля массу, одинаковую для электронов и позитронов. Вторые характеризуются спином, равным единице и нулевой массой.
Простейшим примером электромагнитных процессов является рассеяние одного электрона (позитрона) на другом, происходящее с обменом гамма-квантом. Очевидно, что он физически эквивалентен процессу обычного кулоновского рассеяния, при этом обменный гамма-квант, не регистрируемый явно на эксперименте, называют виртуальным. Именно с такими квантами связывается кулоновское поле, при этом свойство его дальнодействия (точнее, бесконечного радиуса действия) есть прямое следствие того, что масса гамма-кванта равна нулю. Другим важным примером является процесс рождения электрон-позитронной пары из гамма-кванта в кулоновском поле ядер атомов или обратный этому процесс аннигиляции позитрона с электроном с рождением двух или трех гамма-квантов.
Для описания таких элементарных и более сложных процессов в квантовой электродинамике была разработана специальная техника фейнмановских диаграмм — графических рисунков, на которых свободные частицы описываются линиями, а их взаимодействие — пересечениями линий, узлами. Устанавливается строгое соответствие между диаграммой (любой степени сложности) и математическим выражением, которое позволяет рассчитать все физические характеристики описываемого этой диаграммой процесса. При этом элементарный акт электромагнитного взаимодействия, соответствующий рождению электроном (позитроном) реального или виртуального гамма-кванта, связывается с электрическим зарядом электрона е. При расчете физических характеристик процессов это приводит к появлению в их выражениях базовой константы электромагнитного взаимодействия б («постоянная тонкой структуры»), имеющей величину α = е2/4πђc= 1/137, 0360037(33). Эта универсальная константа фактически определяет силу электромагнитного взаимодействия и является его главной характеристикой.
Построенная позже, в середине 1960-х гг., квантовая теория слабого взаимодействия во многом аналогична квантовой электродинамике. К слабым процессам в физике относят процессы бета-распада ядер и элементарных частиц (например, нейтрона), в которых происходит рождение электрон-нейтринных (точнее, антинейтринных) или позитрон-нейтринных пар, процессы захвата ядрами электронов или мюонов, а также процессы рассеяния нейтрино на электронах, протонах или ядрах атомов (существуют также аналогичные процессы слабого рассеяния электронов). С точки зрения КТП элементарным актом слабого взаимодействия является процесс рождения нуклоном (протоном или нейтроном) или электроном (мюоном, тау-мезоном) тяжелого заряженного (W+, W-) или нейтрального (Z0) бозона, который затем мгновенно распадается на пару легких частиц, наблюдаемых в этом процессе экспериментально. При этом тяжелый промежуточный бозон служит в слабом процессе таким же передаточным звеном, каким в электромагнитном процессе является виртуальный гамма-квант. Однако, в отличие от последнего, бозоны имеют большую массу, и радиус их взаимодействия оказывается чрезвычайно малым, порядка 10-17 см. Это и есть радиус слабого взаимодействия. Вместе с тем тот факт, что физическая картина электромагнитного и слабого взаимодействий оказывается аналогичной, позволил физикам создать объединенную теорию, в которой оба взаимодействия при высоких энергиях частиц соединяются в единое, электрослабое. Различие между ними возникает при переходе от больших энергий к малым, в области же высоких энергий оно практически исчезает. При этом все четыре бозона (γ−квант, W+, W-, и Z0-бозон), ответственных за процессы переноса обменных полей, становятся членом единого семейства, обладающего определенной внутренней симметрией и соответствующими ей зарядами.
По этому же принципу построена квантовая теория сильного взаимодействия, лежащая в основе современных представлений о структуре элементарных частиц. Согласно этой теории, элементарные частицы — мезоны и барионы, наблюдаемые во время эксперимента, — построены из кварков, взаимодействие между которыми происходит путем обмена так называемыми глюонами, имеющими массу 0 и спин 1. Кварки имеют спин 1/2 и отличную от нуля массу, электрический заряд кварков составляет -1/3 или +2/3 заряда электрона, кроме того они обладают дополнительными зарядами, называемыми «цветом», «изоспином», «странностью» и др., причем обмен глюонами при взаимодействии изменяет их «цветовую» характеристику. Существует 6 типов различных кварков: u, d, s, c, b, t. Структурно барионы (например, протоны или нейтроны) построены из трех кварков разных цветов, но в целом бесцветны (т. е. имеют нулевой цветовой заряд), а мезоны — из кварков и антикварков и также как целое бесцветны. В современных теоретических схемах предполагается, что кварки всегда находятся только внутри элементарных частиц — мезонов и барионов — и в свободном виде не существуют. Исключением является специальное состояние материи при максимально высоких температурах и давлениях, когда барионов и мезонов не существует, а составляющие их кварковые и глюонные поля образуют так называемую кварк-глюонную плазму — особое состояние, которое, согласно современным представлениям, существовало во Вселенной в первые мгновения после Большого Взрыва. При понижении температуры эта плазма распалась на отдельные элементарные частицы, из которых в дальнейшем были построены ядра, атомы и все другие объекты Вселенной.
Квантовая теория сильного взаимодействия на уровне кварков может быть объединена с теорией электрослабого взаимодействия в общую теоретическую схему, называемую Стандартной моделью (Ш. Глэшоу, А. Салам, С. Вайнберг). В такой модели кварки образуют общее семейство с лептонами, в число которых входят электрон, мюон, тау-мезон и три типа нейтрино (называемых соответственно электронным, мюонным и тауонным), а гамма-квант и три промежуточных бозона, ответственных за слабое взаимодействие, объединяются в общее семейство с глюонами — переносчиками сильного.
Эта модель, основанная на общих постулатах квантовой теории поля, позволила объяснить массу экспериментальных фактов, однако в конце 1990-х и в начале 2000-х гг. были открыты новые явления, не описываемые Стандартной моделью, что указывает на необходимость дальнейшего развития квантово-теоретических представлений. Предполагается, что они будут связаны с открытием новых типов симметрии квантового микромира, например, симметрии между фермионами — частицами спина 1/2, играющими роль базовых, и бозонами — частицами спина 1, исполняющими роль передающих взаимодействия. В этом случае возникают теоретические схемы, называемые суперсимметричными. Однако новых частиц, предсказываемых ими, пока экспериментально не найдено.
Наряду с этим сегодня широко исследуются возможности объединения Стандартной модели с квантовой теорией гравитации, в которой силы тяготения описываются как поля своих «элементарных частиц» — гравитонов.
Пройдя путь от квантовой электродинамики до Стандартной модели элементарных частиц, квантовая теория поля доказала, что она является одним из важнейших инструментов познания мира, соединяющим физические модели с высшими областями математики. Сегодня она применяется не только в физике микромира — она используется во многих областях теоретической физики: теории твердого тела, физике полимеров, теории турбулентности, теории критических явлений, статистической физике и других.
Автор: Ю.В. Гапонов