Зрение

Зре́ние, способность животных получать информацию о внешнем мире благодаря чувствительности к световым волнам, отражаемым или излучаемым окружающими объектами, и при помощи нервной обработки строить модель этого мира. Зрение, наряду с другими рецепторными системами, позволяет животным организовать адекватное поведение. Оно используется при добывании пищи, поисках брачного партнера, ориентации в пространстве, в коммуникативном и оборонительном поведении.
Редактировать

Органы зрения

Светочувствительностью обладают многие организмы: некоторые бактерии (родопсиновые), простейшие, кишечнополостные, черви. Светочувствительные клетки расположены по краю купола медузы, в покровах дождевого червя, у ресничного червя планарииони собраны на головном конце тела в специальных вмятинах. У этих организмов можно наблюдать реакции положительного или отрицательного фототаксиса. Так, двустворчатый моллюск тридакна закрывает створки, если на нее быстро надвинется тень. Но, пожалуй, это еще трудно назвать настоящим зрением.
Подавляющее большинство позвоночных и беспозвоночных имеет специальные сложно устроенные органы зрения — глаза. В глазу собственно светочувствительные клетки образуют один из слоев сетчатки, в которой производится первичная обработка изображений внешнего мира, создаваемых на ней оптическим аппаратом глаза. Из сетчатки информация в виде последовательностей нервных импульсов поступает по зрительным нервам для дальнейшей обработки в мозговые отделы зрительной системы. У позвоночных и многих беспозвоночных глаза парные. Механизмы бинокулярного зрения за счет сопоставления информации, поступающей от двух глаз, позволяют получить более точное и богатое представление об объемной форме предметов и их взаимном расположении, чем при рассматривании одним глазом (монокулярно).
Редактировать

Как видят разные животные

Неверно бытующее представление, что только у человека, как у представителя высшей ступени эволюционной лестницы, хорошее зрение. Зрение адаптивно. В процессе эволюции у каждого биологического вида сформировался такой зрительный аппарат, который помогает своему обладателю выжить в его среде обитания. Адаптации зрительной системы к условиям жизни затрагивают и оптику, и рецепторный аппарат, и зрительные пигменты, поэтому разные животные видят мир по-разному и по-своему. Видимая область спектра и способность различать цвета — цветовое зрение— зависят от того, какие зрительные пигменты и сколько их находится в зрительных рецепторах этого животного — его палочковых и колбочковых клетках. Так, морские рыбы и наземные позвоночные видят, т. е. воспринимают световые колебания в диапазоне длин волн в области 380-650 нм, а пресноводные рыбы и болотные черепахи — 400-730 нм. У насекомых и некоторых птиц, рептилий и рыб есть специальный пигмент, чувствительный к ультрафиолету. К настоящему времени изучены зрительные пигменты сотен видов животных. Практически все животные, живущие в условиях хорошего освещения (водные и наземные, позвоночные и беспозвоночные) обладают цветовым зрением. Животные, активные не только днем, но и в сумерки, имеют в сетчатке высокочувствительные рецепторы — палочки. Строго ночные животные (например, опоссум и глубоководные рыбы) имеют чисто палочковую сетчатку. Насекомые, благодаря специальному строению фоторецепторной мембраны и особому расположению в ней зрительного пигмента, различают плоскости поляризации света. Такой способностью обладают и некоторые рыбы, в то время как люди могут обнаружить ультрафиолетовое излучение или поляризованный свет лишь с помощью специальных приборов.
Редактировать

Как формируется зрительный образ

Результатом работы зрительной системы является формирование модели окружающего мира. Эти модели у животных, находящихся на разных ступенях эволюции, существенно различаются, так же как и диапазоны воспринимаемых ими сигналов, и «вычислительные» ресурсы зрительных отделов мозга. В модели мира каждого животного должны быть в первую очередь представлены те объекты и события, которые имеют для него жизненно важное значение. Форма, размер, отражательные характеристики объектов, их положение в пространстве относительно друг друга и наблюдателя, степень жесткости, характер движения определяются с достаточной точностью, даже вопреки действию многих мешающих факторов. Чтобы один и тот же объект узнавался при разном освещении, в разных ракурсах, на разных расстояниях от глаз и при разном направлении взора, зрительная система имеет специальные механизмы константности (постоянства) восприятия цвета, размера, формы и положения. Эти механизмы обеспечивают сохранение стабильности видимого мира при изменении освещения и при движениях глаз, головы, туловища.
Последовательность мгновенных оптических отображений внешнего мира на глазном дне (точнее, на растре зрительных рецепторов), перекодируемая в сетчатке в последовательность электрических сигналов, служит лишь входом для дальнейшей обработки в зрительных отделах мозга. Продуктом этой обработки является видимая картина мира. Хотя между входными и выходными сигналами имеется определенное соответствие, далеко не всегда правомерно проводить между ними прямые аналогии. Так, удивительно живучи утверждения, будто младенцы видят мир перевернутым, а при наблюдении одним глазом мы воспринимаем мир плоским. Первое из этих заблуждений спровоцировано нашими знаниями о том, что оптическая система глаза человека формирует на глазном дне уменьшенное обратное изображение рассматриваемого окружения. Следуя примитивной логике этого высказывания, надо было бы добавить, что младенцы видят мир находящимся внутри своего черепа и размером меньше шарика для настольного тенниса, да к тому же в двух экземплярах — ведь у нас два глаза. Второе заблуждение обусловлено тем обстоятельством, что с геометрической точки зрения одной проекции объекта недостаточно для восстановления его объемной формы. Но ведь и двух проекций, теоретически, недостаточно. Однако аксиомы геометрии не имеют непосредственного отношения к сущности субъективных моделей мира. Пространственно-временная структура этих моделей, по-видимому, определена генетически. Человек (или животное) лишь заполняет данное ему от рождения ощущение пространства объектами, размеры и положение которых он определяет при помощи разнообразных (и не только зрительных) механизмов, в числе которых есть и монокулярные, и бинокулярные. При наблюдении одним глазом человек может получать представление об объемной форме неподвижных предметов и их взаимном расположении по глубине на основе изменений аккомодации при переводе взгляда с одного предмета на другой, на основе анализа перспективных трансформаций, светотени, градиентов текстуры, заслонения удаленных объектов ближними и других особенностей изображений.
Редактировать

Общий план строения зрительной системы

При колоссальном разнообразии деталей строения глаз и зрительных мозговых отделов общий план строения зрительной системы, как и принципы нервной обработки зрительных сигналов, по-видимому, общие для всех позвоночных, а может быть, и беспозвоночных животных. Зрительный процесс начинается с поглощения кванта света молекулой зрительного пигмента рецептора. Затем следует сложный многоступенчатый процесс — фототрансдукция, приводящая к генерации электрического потенциала зрительного рецептора, или рецепторного сигнала. Нервная обработка рецепторных сигналов начинается уже в сетчатке глаза и продолжается в специализированных отделах мозга.
Обработка изображения, выделение значимых признаков объекта и отбрасывание несущественных, осуществляется параллельно по многим каналам. Такие разные задачи, как цветоразличение, узнавание формы, размера, стереопсис (объемное видение) требуют разных стратегий, или нервных механизмов. У высших животных отчетливо прослеживается иерархичность в организации зрительной системы. Отдельные ее участки подключаются к обработке сигнала последовательно один за другим, и в этом ряду все больше возрастает степень абстрагирования и сложность отображения объекта.
Главным первичным зрительным центром в мозге низших позвоночных является крыша среднего мозга. Здесь оканчивается подавляющая часть аксонов зрительного нерва, а оставшиеся идут в ядра (коленчатое тело, ядро Беллончи) промежуточного мозга и в ядра дорзального таламуса. У млекопитающих главным обрабатывающим центром становится кора головного мозга . Большая часть зрительных волокон идет в наружное коленчатое тело (многослойное ядро промежуточного мозга). Волокна, выходящие из коленчатого тела, объединяются в один широкий пучок, называемый зрительной радиацией, который и восходит к первичной зрительной коре, называемой еще стриарной корой, расположенной в затылочной части коры. Зоны, связанные с переработкой зрительной информации, обнаружены также в височной, лобной и теменной коре.
Существует соответствие между точками рецепторного растра сетчатки и клетками проекционных зрительных зон мозга, иначе говоря, ретинотопические проекции (карты сетчатки) в зрительных отделах мозга. Это особенно наглядно демонстрирует электрофизиологический опыт на крыше среднего мозга лягушки или рыбы — при перемещении отводящего электрода по поверхности мозга, аналогично смещаются и поля зрения соответствующих нейронов. На складчатой поверхности коры мозга млекопитающих это сложнее выявить.
Редактировать

Первичная обработка изображения

Показано, что в зрительной системе (на разных ее уровнях у разных животных) существуют нейроны, выделяющие значимые признаки изображения, так называемые детекторы. Существуют детекторы малых контрастных подвижных пятен, направления движения, ориентированных линий, затемнения, приближающихся объектов и т. д. У низших позвоночных выделение значимых (ключевых) признаков происходит уже в сетчатке. Выходные нейроны сетчатки — ганглиозные клетки — сообщают в отделы мозга, организующие зрительно обусловленное моторное поведение, сведения о размерах, направлении движения, окраске стимула. В специальных поведенческих экспериментах у стрекозы были обнаружены такие же детекторы направления движения, как и у рыб. Механизмы константного восприятия окраски предметов при изменении освещения одинаковы у пчел, рыб, человека или жабы.
Каждому детектору соответствует специальный тип ганглиозных клеток (см. Сетчатка). Например, охотничье (пищедобывательное) поведение лягушки запускает маленькое подвижное черное пятнышко — стимул, вызывающий реакцию в ганглиозной клетке сетчатки — детекторе пятна. При замене такого стимула на большое темное пятно пищевая форма поведения сменяется на оборонительную, при этом активизируются клетки — детекторы затемнения. В сетчатке рыб насчитывается не менее 10 типов детекторов. Это значит, что обработка изображения в сетчатке у рыб идет одновременно по крайней мере по 10 параллельным каналам. Каждая ганглиозная клетка-детектор связана с определенным набором рецепторных клеток через специальные биполяры, горизонтальные и амакриновые клетки. У высших животных детекторы обнаруживаются электрофизиологами не в сетчатке, а в центральных отделах зрительной системы — в разных проекционных зонах коры. Смысл такого смещения функционально аналогичных элементов от периферических отделов в центральные можно представить следующим образом. Любая специфическая обработка зрительной информации, приводящая к выделению какого-либо одного параметра зрительного стимула, связана с неизбежной и необратимой потерей информации, поэтому такая фильтрация информации у животных с ограниченным набором поведенческих реакций может производиться и в сетчатке. У животных с более сложным поведением в центральные отделы мозга, обладающие большими вычислительными возможностями и способные к более детальной обработке, должна поступать полная, а не профильтрованная сквозь сито детекторов сетчатки информация.
Формирование связей между элементами зрительной системы во многом определено, «запрограммировано» генетически, но в окончательном становлении зрительной системы, особенно ее высших мозговых отделов, большую роль играет и нормальный зрительный опыт. Врачи-офтальмологи знают, что ребенок в возрасте до 7-10 лет, лишенный временно (на несколько дней) возможности смотреть двумя глазами (например, из-за травмы) теряет способность воспринимать глубину, затрудняется при решении стереозадач, у него может развиться скрытое косоглазие. Эти наблюдения подтверждены и в специальных экспериментах на животных. Решение зрительных задач по цветоразличению, узнаванию формы, движению, стереопсису требует, по-видимому, разных нервных механизмов (стратегий), и поэтому существует тенденция разведения их по разным каналам. Так, у лягушки в крыше среднего мозга производится анализ формы, размера, знака контраста, в промежуточном мозге — цвета, в таламусе — направления движения. Есть такое разделение и у высших животных.
Редактировать

Перспективы исследований

Зрительную систему человека и животных исследуют давно. Известна физическая природа стимула — света. Понятно, где начинается процесс восприятия и в каком направлении развивается. Возникает законный вопрос: каким образом вся эта информация в конце концов собирается вместе при восприятии и формировании зрительного образа? Наука пока не дает ответа. Но это не значит, что вопрос принципиально неразрешим. Исследования активно ведутся с разных сторон. Используются разнообразные методы: самонаблюдение, психофизика, сравнительно-физиологические и морфологические исследования на животных разной степени сложности организации, живущих в разных условиях зрительного окружения. Проводятся электрофизиологические, биохимические, гистохимические, электронно-микроскопические, иммунохимические и др. исследования свойств нейронов; генетические и молекулярно-генетические исследования зрительных пигментов. Большие надежды возлагают на моделирование отдельных блоков и зрительного процесса в целом. Например, уже построена математическая модель простой зрительной системы мечехвоста.
Редактировать

Дополнительная литература

  • Вавилов С. И. Глаз и солнце. М., 1950.
  • Артамонов И. Д. Иллюзии зрения. М., 1961.
  • Грегори Р. Л. Глаз и мозг: Психология зрительного восприятия. М., 1970.
  • Физиология сенсорных систем. Физиология зрения. Л., 1971. Т. 1.
  • Францевич Л. И. Пространственная ориентация животных. Киев, 1986.
  • Хьюбел Д. Глаз, мозг, зрение. М., 1990.
  • Физиология зрения. М., 1992.
  • Walls G. L. The vertebrate eye and its adaptive radiation. Michigan, 1942.
  • Polyak S. L. The retina. Chicago, 1941.

Смотри также

Строение глаза

Глазные болезни

Исследователи

Статья находится в рубриках
Яндекс.Метрика