Амо́рфные и стеклообра́зные полупроводнико́вые материа́лы — аморфные и стеклообразные вещества, проявляющие полупроводниковые свойства. Характеризуются наличием ближнего порядка и отсутствием дальнего порядка.
Для стеклообразного полупроводникового материала, который можно рассматривать как особый вид аморфного вещества, характерным является наличие пространственной решетки, в которой кроме ковалентно связанных атомов имеются полярные группировки ионов. В таких материалах связь между группами атомов и ионов осуществляется за счет короткодействующих ковалентных ван-дер-ваальсовых сил. Неорганические стеклообразные полупроводники обладают электронной проводимостью. В отличие от кристаллических полупроводников у стеклообразных полупроводников отсутствует примесная проводимость. Примеси в стеклообразных полупроводниках влияют на отклонение от стехиометрии, и тем самым изменяют их электрофизические свойства. Эти полупроводники окрашены и непрозрачны в толстых слоях. Стеклообразные полупроводниковые материалы характеризуются разориентированностью структуры и ненасыщенными химическими связями.
Аморфные и стеклообразные полупроводники по составу и структуре подразделяются на оксидные, халькогенидные, органические, тетраэдрические.
Оксидные кислородсодержащие стекла получают сплавлением оксидов металлов с переменной валентностью, например, V2O5-P2O5-ZnO. Оксиды металлов, образующие эти стекла, имеют одновременно не менее двух разновалентных состояний одного и того же элемента, что и обусловливает их электронную проводимость. Бескислородные халькогенидные стекла получают путем сплавления халькогенов (S, Se, Te) с элементами III, IV, V групп периодической системы. Халькогенидные стеклообразные полупроводники получают в основном либо охлаждением расплава, либо испарением в вакууме. Типичные представители —сульфид и селенид мышьяка. К ним относятся также двух- и многокомпонентные стеклообразные сплавы халькогенидов (сульфидов, селенидов и теллуридов) различных металлов (например, Ge-S, Ge- Se, As- S, As- Se, Ge- S P, Ge-As- Se, As-S-Se, As-Ge-Se-Те, As-Sb-S-Se, Ge-S-Se, Ge-Pb-S). Халькогенидные стекла обладают высокой прозрачностью в ИК-области спектра от 1 до 18 мкм. Аморфные пленки сложных халькогенидных соединений обладают большими возможностями вариации их физико-химических свойств.
Аморфные пленки Si, Ge, GaAs и других полупроводниковых веществ по своим свойствам не представляют практического интереса. Отсутствие в этих полупроводниках дальнего порядка и наличие большого количества дефектов типа микропор приводит к наличию у многих атомов ненасыщенных болтающихся связей. Следствием этого является высокая плотность локализованных состояний (1020см-3) в запрещенной зоне. В связи со спецификой процесса электропроводности в аморфных полупроводниках управлять электрическими свойствами таких материалов практически невозможно.
Введение водорода в аморфные пленки кремния существенным способом изменяет его электрофизические свойства. Растворяясь в аморфном кремнии, водород замыкает на себе болтающиеся связи (насыщает их), в результат в таком «гидрированном» материале, названном Si:H, резко снижается плотность состояний в запрещенной зоне (до 1016-1017см-3). Такой материал можно легировать традиционными донорными (P, As) и акцепторными (В) примесями, придавая ему электронный или дырочный тип проводимости, создавать в нем p-n-переходы. На основе кремния синтезирован ряд гидрированных аморфных полупроводников, обладающих интересными электрическими и оптическими свойствами Si1-xCx:H, Si1-xGex:H, Si1-xNx:H, Si1-xSnx:H.
Практическое применение аморфных и стеклообразных полупроводников разнообразно. Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому, например, при изготовлении на его основе солнечных элементов. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки -Si:Н толщиной 0, 5–1, 0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. По сравнению с поликристаллическими кремниевыми элементами изделия на основе -Si:Н производят при более низких температурах (300 °С). Гидрированный кремний является прекрасным материалом для создания светочувствительных элементов в ксерографии, датчиков первичного изображения (сенсоров), мишеней видеконов для передающих телевизионных трубок. Оптические датчики из гидрированного аморфного кремния используются для записи в памяти видеоинформации, для целей дефектоскопии в текстильной и металлургической промышленности, в устройствах автоматической экспозиции и регулирования яркости. Стеклообразные полупроводники являются фотопроводящими полуизоляторами и используются в электрофотографии, системах записи информации и ряде других областей. Благодаря прозрачности в длинноволновой области спектра халькогенидные стеклообразные полупроводники применяются в оптическом приборостроении и т. д.