Группа

Гру́ппа (от нем. Gruppe), понятие современной математики. Возникло из рассмотрения совокупности операций, производимых над какими-либо объектами и обладающих тем свойством, что результат последовательного применения двух или большего числа операций из этой совокупности равносилен какой-то одной операции из этой совокупности. Пример: умножение на рациональные числа (умножение сначала на m, а потом на n равносильно умножению на mn). Оказалось, что в наиболее важных случаях выполняются следующие условия:
1) в совокупность входит единичная, или тождественная, операция, не изменяющая объект;
2) для каждой операции существует обратная операция, действие которой противоположно;
3) для операций всегда выполняется сочетательный закон. Совокупности операций с указанными свойствами и называются группами операций или же группами преобразований. Рассматриваются также и группы объектов другой природы, напр. группы чисел. Понятие группы нашло многочисленные приложения в физике.
Статья находится в рубриках
Яндекс.Метрика