Бо́льцмана распределение — распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия, которое было открыто в 1868-1871 гг. австрийским физиком Л. Больцманом. Согласно ему, число частиц ni с полной энергией ei равно:
ni = Aωi exp (-ei /kT)
где ωi — статистический вес (число возможных состояний частицы с энергией ei). Постоянная А находится из условия, что сумма ni по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки): ∑ni = N. В случае, когда движение частиц подчиняется классической механике, энергию ei можно считать состоящей из кинетической энергии ei, кин частицы (молекулы или атома), ее внутренней энергии ei, вн (например, энергии возбуждения электронов) и потенциальной энергии ei, пот во внешнем поле, зависящей от положения частицы в пространстве:
ei = ei, кин + ei, вн + ei, пот
Распределение частиц по скоростям (распределение Максвелла) является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения и влиянием внешних полей. В соответствии с ним формулу распределения Больцмана можно представить в виде произведения трех экспонент, каждая из которых дает распределение частиц по одному виду энергии.
В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или других планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. ei, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.
В астрофизике, особенно в теории звездных спектров, распределение Больцмана часто используется для определения относительной заселенности электронами различных уровней энергии атомов.
Распределение Больцмана было получено в рамках классической статистики. В 1924-1926 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе-Эйнштейна (для частиц с целым спином) и Ферми-Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение Больцмана, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, то есть когда на одну частицу приходится много квантовых состояний или, другими словами, когда степень заполнения квантовых состояний мала. Условие применимости распределения Больцмана можно записать в виде неравенства:
N/V . [h3/(2πmKT)3/2]
где N — число частиц, V — объем системы. Это неравенство выполняется при высокой температуре и малом числе частиц в единице объема (N/V). Из него следует, что чем больше масса частиц, тем для более широкого интервала изменений Т и N/V справедливо распределение Больцмана. Например, внутри белых карликов приведенное выше неравенство нарушается для электронного газа, и поэтому его свойства следует описывать с помощью распределения Ферми-Дирака. Однако оно, а вместе с ним и распределение Больцмана, остаются справедливыми для ионной составляющей вещества. В случае газа, состоящего из частиц с нулевой массой покоя (например, газа фотонов), неравенство не выполняется ни при каких значениях Т и N/V. Поэтому равновесное излучение описывается законом излучения Планка, который является частным случаем распределения Бозе-Эйнштейна.