Жидкие диэлектрики

Жи́дкие диэле́ктрики — молекулярные жидкости, удельное электрическое сопротивление которых превышает 1010 Ом см. Как и твердые диэлектрики, жидкие диэлектрики поляризуются в электрических полях: для них характерна электронная и ориентационная поляризация. Диэлектрическая проницаемость (статическая) жидких диэлектриков может достигать значений 102 (для частоты 104Гц). В сильных электрических полях происходит электрический пробой жидких диэлектриков, механизм которого (тепловой или электронный) зависит от природы жидкости, ее чистоты, температуры, и др.
Жидкими диэлектриками являются насыщенные ароматические, хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганические соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы некоторых халькогенидов и др. Для жидких диэлектриков характерна ковалентная связь электронов в молекулах, а между молекулами действуют ван-дер-ваальсовые силы.
Жидкие диэлектрики применяются в электроизоляционной технике в качестве пропитывающих и заливочных составов при производстве электро- и радиотехнической аппаратуры: в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. По применению они делятся на жидкости для конденсаторов, кабелей, циркулярных систем охлаждения выпрямительных установок и турбогенераторов, масляных выключателей. Электрическая прочность, диэлектрическая проницаемость и теплопроводность жидких диэлектриков имеет более высокие значения по сравнению с воздухом и другими газами при атмосферном давлении. Поэтому электроизоляционные жидкие диэлектрики должны обеспечивать повышение электрической прочности твердой пористой изоляции, отвод тепла от обмоток трансформатора, гашение электрической дуги в масляных выключателях. В импульсном электрическом поле их электрическая прочность возрастает.
Основными характеристиками диэлектрических жидкостей являются диэлектрическая проницаемость, электропроводность и электрическая прочность.
Диэлектрическая проницаемость является истинной характеристикой жидкостей и характеризуется дипольным моментом и поляризуемостью молекул. Собственная проводимость жидких диэлектриков имеет электронную и ионную составляющие. Она обусловлена автоэлектронной эмиссией с катода, электролитической диссоциацией молекул, ионизацией молекул. Электрические свойства жидких диэлектриков в значительной мере зависят от степени их очистки. Загрязнения, как правило, снижают электрическую прочность жидких диэлектриков и увеличивают проводимость за счет возрастания количества ионов и заряженных коллоидных частиц.
Проводимость жидкостей определяется ионизацией молекул и наличием в жидкости примесей. Основными примесями, уменьшающими электрическую прочность, являются микрочастицы, микропузырьки и вода. Очистка диэлектрических жидкостей (дистилляцией, частичной кристаллизацией, адсорбцией, ионным обменом) приводит к уменьшению электропроводности и диэлектрических потерь и возрастанию электрической прочности. Электрическая прочность в значительной степени является технологической характеристикой жидкого диэлектрика и электродов, способов приготовления и эксплуатации изоляционного промежутка. На нее влияют не только те примеси, которые определяют электропроводность, но и форма и материал электродов, длительность импульса, наличие пузырьков.
Наиболее распространенными жидкими диэлектриками, применяемыми в качестве электроизоляционных материалов, являются:
нефтяные масла — трансформаторное, конденсаторное и кабельное;
синтетические жидкие диэлектрики — полихлордифенил (совол, совтол), кремнийорганические и фторорганические;
растительные технические масла (касторовое, льняное, конопляное и тунговое) в электроизоляционной технике применяются ограниченно.
Редактировать

Нефтяные электроизоляционные масла

Нефтяные масла — слабовязкие, практически неполярные жидкости. По химическому составу представляют смесь различных углеводородов парафинового, нафтенового, ароматического и нафтено-ароматического рядов с небольшим (до 1% масс) содержанием присадок, улучшающих их стойкость к термоокислительному старению, а также температурно-вязкостные характеристики. Нефтяное трансформаторное масло получило наиболее широкое применение в высоковольтных аппаратах: трансформаторах, масляных выключателях, высоковольтных водах. Нефтяное трансформаторное масло является неполярным диэлектриком. Поэтому в чистом масле диэлектрические потери обусловлены в основном токами проводимости, величина которых мала, следовательно, малы и диэлектрические потери. При 20оС и 100 Гц = 2, 2-2, 3, = 1010-1013Ом.м, Епр= 10-28 кВ/мм. В механизме пробоя основное влияние на образование газоразрядного канала проводимости имеет нерастворенная в масле полярная полупроводящая и проводящая примесь. Вода, растворенная в масле, увеличивает электропроводность и электрические потери, но мало влияет на электрическую прочность. Вода, выделенная в виде мелкодисперсных капель, вызывает резкое увеличение неоднородности поля, что приводит к снижению пробивного напряжения.
Нефтяное конденсаторное масло получают из трансформаторного путем его более глубокой очистки адсорбентами. Его электрические свойства лучше, чем у трансформаторного масла. При 20оС и 1 Гц = 2, 1-2, 3, = 1011-1012Ом.м, Епр= 14-18 кВ/мм. Используют для пропитки бумажных конденсаторов, в особенности силовых. При пропитке в результате заполнения пор бумаги маслом увеличиваются диэлектрическая проницаемость и электрическая прочность бумаги, следовательно, возрастают емкость конденсатора и его рабочее напряжение.
Нефтяное кабельное масло применяют для пропитки бумажной изоляции силовых кабелей с рабочим напряжением до 35 кВ в свинцовой или алюминиевой оболочке, а также для заполнения металлических оболочек маслонаполненных кабелей на напряжение до 110кВ и выше.
Конденсаторные масла отличаются от трансформаторных масел более тщательной очисткой и меньшими значениями tg (до 2.10-4). Недостатки нефтяных масел — пожаро- и взрывоопасность, невысокая стойкость к тепловому и электрическому старению, гигроскопичность.
Редактировать

Синтетические жидкие диэлектрики

Наибольшее применение получили синтетические жидкости на основе хлорированных углеводородов (совол, совтол), что связано с их высокой термической устойчивостью, электрической стабильностью, негорючестью. Однако в связи с токсичностью хлорированных углеводородов их применение сначала ограничивалось, а в настоящее время почти повсеместно запрещено.
Жидкие диэлектрики на основе кремнийорганических соединений (полиорганосилоксанов) являются нетоксичными и экологически безопасными. Они не вызывают коррозии металлов, обладают очень низкой гигроскопичностью и морозостойкостью. Эти жидкости представляют собой полимеры с низкой степенью полимеризации, в молекулах которых содержится повторяющаяся силоксанная группировка: Кремний-кислородная связь имеет высокую термическую и химическую стойкость, поэтому кремнийорганические соединения устойчивы при высоких температурах (до 250 оС). По своим диэлектрическим характеристикам полиорганосилоксановые жидкости приближаются к неполярным диэлектрикам. При 20 оС и 100 Гц = 2, 4-2, 8, = 1011-1012Ом.м, Епр= 14-18 кВ/мм. Полиорганосилоксановые жидкости используют в импульсных трансформаторах, специальных конденсаторах, работающих при повышенной температуре, блоках радио- и электронной аппаратуры и в некоторых других случаях. Их недостаток — сравнительно быстрая воспламеняемость, кроме того, они значительно дороже нефтяных масел.
Жидкие диэлектрики на основе фторорганических соединений отличаются негорючестью, высокой химической, окислительной и термической стабильностью, высокими электрофизическими и теплопередающими свойствами. Молекулы фторорганических жидкостей состоят из атомов углерода и фтора, при этом молекулярную цепь образуют атомы углерода. Фторорганические жидкости — неполярные диэлектрики. При 20 оС и 100 Гц = 2, 2-2, 5, ρ = 1012-1014Ом.м, Епр= 12-19 кВ/мм. Они обеспечивают более интенсивный отвод тепла от охлаждаемых обмоток и магнитопроводов трансформатора, чем нефтяные масла и кремнийорганические соединения. Применяются для наполнения небольших трансформаторов, блоков электронного оборудования и других электрических аппаратов в тех случаях, когда рабочие температуры велики для других видов жидких диэлектриков. Некоторые перфторированные жидкие диэлектрики могут использоваться для создания испарительного охлаждения в силовых трансформаторах. Недостатки — токсичность некоторых видов фторорганических жидкостей, высокая стоимость.
Редактировать

Растительные масла

К растительным маслам относятся касторовое, тунговое, льняное, конопляное. Растительные масла — слабополярные диэлектрики. Касторовое масло имеет высокую нагревостойкость и используется как пластификатор и для пропитки бумажных конденсаторов. Тунговое, льняное и конопляное масла относятся к «высыхающим» маслам. Высыхание обусловлено не испарением жидкости, а химическим процессом, в основе которого лежит окислительная полимеризация. Используются в качестве пленкообразующих в лаках (в том числе электроизоляционных), эмалях и красках.
Касторовое масло получается из семян клещевины; иногда используется для пропитки бумажных конденсаторов. Плотность касторового масла 0, 95-0, 97 Мг/м3, температура застывания от минус 10 до минус 180 °С; диэлектрическая постоянная Ɛ равна 4, 0 - 4, 5 при температуре 200 °С; Епр=15-20 Мв/м. Касторовое масло не растворяется в бензине, но растворяется в этиловом спирте.
Льняное масло золотисто - желтого цвета получается из семян льна. Его плотность 0, 93-0, 94 Мг/м3, температура застывания - около -200 °С.
Тунговое (древесное) масло получают из семян тунгового дерева, которое разводится на Дальнем Востоке и на Кавказе. Тунговое масло не является пищевым и даже токсично. Плотность тунгового масла — 94 Мг/м3, температура застывания — от 0 до минус 50 °С.
По сравнению с льняным маслом тунговое высыхает быстрее. Оно даже в толстом слое высыхает более равномерно и дает водонепроницаемую пленку, чем льняное.
Высыхающие масла применяются в электропромышленности для изготовления электроизоляционных масляных лаков, лакотканей, для пропитки дерева и для других целей. В последнее время наблюдается тенденция к замене высыхающих масел синтетическими материалами. Невысыхающие масла могут применяться в качестве жидких диэлектриков.

Смотри также

Статья находится в рубриках
Яндекс.Метрика