Вход
Регистрация Зарегистрируйтесь, чтобы получить расширенные возможности...

Ферми-энергия

Фе́рми-эне́ргия — значение энергии, ниже которой при температуре абсолютного нуля Т=0 К, все энергетические состояния системы частиц, подчиняющихся Ферми — Дирака статистике, заняты, а выше — свободны. Уровень Ферми — некоторый условный уровень, соответствующий энергии Ферми системы фермионов; в частности электронов твердого тела, играет роль химического потенциала для незаряженных частиц. Статистический смысл уровня Ферми — при любой температуре его заселенность равна 1/2.
Положение уровня Ферми является одной из основных характеристик состояния электронов (электронного газа) в твердом теле. В квантовой теории вероятность заполнения энергетических состояний электронами, определяется функцией Ферми F(E):
F(E) =1/(e(E-EF)/kT+1), где
Е — энергия уровня, вероятность заполнения которого определяется,
EF — энергия характеристического уровня, относительно которого кривая вероятности симметрична;
Т — абсолютная температура;
При абсолютном нуле из вида функции следует, что
F(E) = 1 при Е F;
F(E) = 0 при Е >EF.
То есть все состояния, лежащие ниже уровня Ферми, полностью заняты электронами, а выше него свободны.
Энергия Ферми EF — максимальное значение энергии, которое может иметь электрон при температуре абсолютного нуля. Энергия Ферми совпадает со значениями химического потенциала газа фермионов при Т =0 К, то есть уровень Ферми для электронов играет роль уровня химического потенциала для незаряженных частиц. Соответствующий ей потенциал jF = EF называют электрохимическим потенциалом.
Таким образом, уровнем Ферми или энергией Ферми в металлах является энергия, которую может иметь электрон при температуре абсолютного нуля. При нагревании металла происходит возбуждение некоторых электронов, находящихся вблизи уровня Ферми (за счет тепловой энергии, величина которой порядка kT). Но при любой температуре для уровня с энергией, соответствующей уровню Ферми, вероятность заполнения равна 1/2. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 1/2 заполнены электронами, а все уровни, лежащие выше уровня Ферми, с вероятностью больше 1/2 свободны от электронов.
Для электронного газа в металлах при Т = 0 величина энергии Ферми однозначно определяется концентрацией электронов и ее можно выразить через число n частиц электронного газа в единице объема: зависимость энергии Ферми от концентрации электронов нелинейная.
С ростом температуры (а также уменьшением концентрации электронов) уровень Ферми смещается по шкале энергий влево, но его заселенность остается равной 1/2. В реальных условиях изменение E увеличением температуры мало. Например, для Ag, имеющего при Т=0 значение EF равное 5,5 эВ, изменение энергии Ферми при температуре плавления составляет всего около 0,03% от исходного значения.
В полупроводниках при очень низких температурах уровень Ферми лежит посередине между дном зоны проводимости и потолком валентной зоны. (Для донорных полупроводников — полупроводников n-типа проводимости — уровень Ферми лежит посередине между дном зоны проводимости и донорным уровнем). С повышением температуры вероятность заполнения донорных состояний уменьшается, и уровень Ферми перемещается вниз. При высоких температурах полупроводник по свойствам близок к собственному, и уровень Ферми устремляется к середине запрещенной зоны. Аналогичные закономерности проявляются и полупроводниках р-типа проводимости.
Существование энергии Ферми является следствием Принципа Паули. Величина энергии Ферми существенно зависит от свойств системы. Понятие об энергии Ферми используется в физике твердого тела, в ядерной физике, в астрофизике и т. д.
Статья находится в рубриках
Яндекс.Метрика